For Better Performance Please Use Chrome or Firefox Web Browser

Surface Roughness Measurement of Weft Knitted Fabrics Using Image Processing

Abstract

This paper focuses on measuring the roughness of knitted fabrics using a non-contact method. Research on objectifying the handle of textile fabrics is a very important factor in textile and garment manufacturing and retailing industries. Fabric handle is influenced by mechanical and surface properties. The KES-F system is a standard objectified method among different measurement methods. However, the KES-F system is time-consuming, and the translation of the data measured is difficult. In addition, the KES-F method as a contact-method is more easily affected by environmental conditions, such as moisture, and is not suitable as an on-line system in the manufacturing process. Hence the surface roughness of knitted fabrics without any deformation was measured by a non-contact method using a high resolution scanner. The data was controlled on a computer by using MATLAB software to obtain the roughness index. The results were compared with the surface characteristic values (SMD) measured by the KES-F system. The findings show a good correlation between fabric roughness values measured by the two different methods. Moreover, a negative correlation coefficient shows that the roughness value measured by Kawabata changes reversely proportional to those measured by the image processing method. Finally, the non-contact measurement of fabric roughness using a high resolution scanner is useful for the description of fabric roughness.

 


 

Full-Text (Available)

 

تحت نظارت وف ایرانی