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Effects of fibre, yarn and fabric parameters on the pilling 
performance of weft knitted fabrics produced from wool/acrylic 
blended yarns have been investigated. In order to optimize the 
process conditions and estimate the individual effects of each 
controllable factor on a particular response, Taguchi’s 
experimental design is used. The controllable factors considered 
in this study are blend ratio, yarn twist multiple and count, 
number of feeding yarns, fabric structure and knit density. 
According to the signal-to-noise ratio analysis, it is observed 
that the used materials type and the number of feeding yarns 
have the largest and smallest effect on the pilling performance, 
respectively. Knit density is the second factor affecting the 
pilling performance of knitted structures and it is followed by 
factors knit structure, yarn twist and yarn count. The optimum 
condition to achieve the least pilling is determined. The 
prediction of fabric pilling is made using neural network. The 
maximum and minimum errors of prediction are found to be 
4.18% and 0.21% respectively. The average of predicted error of 
the number of pills for weft knitted fabrics is 1.92%. The results 
show the good capability and predictive power of artificial 
neural network algorithm to predict the pilling performance of 
weft knitted fabric. 
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Pilling performance is one of the most important 
characteristics of fabrics. When different parts of 
garments are rubbed together through some 
mechanical actions, the fibres present on fabric 
surface get entangled and form pills. It considerably 
affects the appearance and handle of fabric which is 
undesirable for consumers. Previous investigations1-14 
have identified many factors that contribute to fabric 
pilling. These factors constitute every stage of the 
fibre to fabric processing chain and include fibre 

properties (type, diameter, tensile strength, fatigue, 
bending rigidity, and initial modulus), yarn properties 
(type, twist factor, blend ratio) and fabric structures. 
However, fabrics pilling problems have not yet been 
solved2. 

Weft knitted fabrics find wider use in time since 
they can be produced more easily at a lower cost, and 
they are more flexible. Since the weft knitted fabrics 
have open structures, are produced with low twist yarns 
and are less stable than woven fabrics; for this reason, 
knitted fabrics are rarely objected to the pilling 
phenomenon. Furthermore, knitted constructions are 
composed of a series of loops; a greater yarn surface 
area is exposed, making such fabrics more susceptible 
to abrasive wear3. 

Campos and Bechtold15 presented a mathematical 
model for estimating fibre–fibre friction. Using this 
model, an indication of the pilling properties of  
man-made cellulosic knitted fabrics was obtained. 
Cooke and Arthur9 reported that the pilling process 
occurs in three stages including fuzz formation, 
entanglement into pills, and pill wear-off. Li et al.16 
investigated the effect of cashmere yarn properties on 
the pilling of cashmere knitted fabric using the 
optimal scaling regression analysis method. Buceline 
et al.17 investigated the influence of fibrous 
composition and chemical softeners on the propensity 
of fuzzing and pilling of plain and plated jersey 
pattern knitted fabrics. 

Although the problem of pilling has attracted 
extensive research attentions, the modeling and 
predicting this phenomenon is still elusive. Present 
work was therefore undertaken to study the effects of 
fibre, yarn and fabric parameters on the pilling 
performance of weft knitted fabrics produced from 
wool/acrylic blended yarns. In order to estimate the 
optimum process conditions and examine the 
individual effects of each of the controllable factors 
on a particular response, Taguchi’s experimental 
design was used. The controllable factors considered 
in this study are blend ratio, yarn twist, yarn count, 
the number of feeding yarns, fabric structure and knit 
density. Finally, fabric pilling was predicted using 
artificial neural network methodology which is known 
as one of the most popular algorithms used in textile 
disciplines18-28. 
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Experimental 
In the present study, the number of pills was 

considered as 'smaller the better' type of quality 
characteristic since the goal was to minimize it. The 
controllable factors considered were material type, 
yarn count and twist, knit structure, knit density and 
the number of feeding yarns. Table 1 represents the 
layout of the experimental design, which has been 
obtained by assigning the selected factors and their 
levels to appropriate columns of L36 orthogonal array. 
An orthogonal array L36 was chosen because it 
required only 36 runs for combination of six 
controllable factors. Four factors (knit density, 
number of feeding yarns, yarn count and yarn twist 
multiple) were varied at two levels and the remaining 
two factors (material type, knit structure) at three 

levels. While conducting the experiments, the test 
runs were randomly made in order to avoid the 
unidentified noise sources, which were not considered 
but could have an adverse impact on the response 
characteristic. Number of pills formed on samples 
surfaces in revolution of 2000 have been reported as 
the response of each experiment. 

The blended yarns were spun using a commercial 
long staple spinning system. Wool fibres (fineness 
3.15 den, mean length 84 mm) and acrylic fibres 
(fineness 8.15 den, mean length 85 mm) were used in 
this investigation. 

Fabrics were knitted in three different structures 
using a flat knitting machine (E10). The structures of 
fabrics are depicted in Fig. 1. To prepare the wet-and-
dry relaxed samples, the fabrics were washed in a 

Table 1— Taguchi array L36 
 

Specifications  Run Yarn count 
Nm 

The number of 
feeding yarns 

Knit density 
loop/cm2 

Twist multiple 

mα  

Material 
Wool/acrylic 

Knit structure 
Weight 

2
g

m
 

Thickness 
mm

 

1 10 Single High 80 25/75 Plain 0.66 209.42 
2 10 Single High 80 50/50 Rib 0.66 209.42 
3 10 Single High 80 75/25 Full-milano 0.76 245.27 
4 10 Single High 80 25/75 Rib 0.85 272.16 
5 10 Single High 80 50/50 Plain 1.12 312.91 
6 10 Single High 80 75/25 Full-milano 1.14 332.46 
7 10 Single Low 90 25/75 Plain 1.43 470.18 
8 10 Single Low 90 50/50 Rib 1.51 428.62 
9 10 Single Low 90 75/25 Full-milano 2.01 669.82 
10 10 Double High 90 25/75 Plain 1.91 609.52 
11 10 Double High 90 50/50 Rib 1.99 704.04 
12 10 Double High 90 75/25 Full-milano 1.94 655.96 
13 10 Double Low 80 25/75 Rib 1.13 299.87 
14 10 Double Low 80 50/50 Full-milano 1.13 299.87 
15 10 Double Low 80 75/25 Plain 1.18 316.17 
16 10 Double Low 90 25/75 Rib 1.33 374.84 
17 10 Double Low 90 50/50 Full-milano 1.63 450.62 
18 10 Double Low 90 75/25 Plain 1.78 491.36 
19 15 Single Low 90 25/75 Rib 2.19 620.11 
20 15 Single Low 90 50/50 Full-milano 2.08 616.85 
21 15 Single Low 90 75/25 Plain 1.16 361.80 
22 15 Single Low 80 25/75 Rib 1.19 453.88 
23 15 Single Low 80 50/50 Full-milano 1.30 387.06 
24 15 Single Low 80 75/25 Plain 1.18 366.69 
25 15 Single High 90 25/75 Full-milano 1.71 443.29 
26 15 Single High 90 50/50 Plain 1.71 443.29 
27 15 Single High 90 75/25 Rib 1.63 365.06 
28 15 Double Low 80 25/75 Full-milano 1.85 432.69 
29 15 Double Low 80 50/50 Plain 0.98 254.24 
30 15 Double Low 80 75/25 Full-milano 1.07 257.50 
31 15 Double High 90 25/75 Rib 1.17 338.98 
32 15 Double High 90 50/50 Plain 1.05 273.79 
33 15 Double High 90 75/25 Rib 1.86 499.51 
34 15 Double High 80 25/75 Full-milano 1.86 506.84 
35 15 Double High 80 50/50 Plain 1.76 484.84 
36 15 Double High 80 75/25 Rib 1.95 559.00 
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domestic washer at 40°C for 30 min with commercial 
detergent and tumble dried at 70°C for 15 min in an 
electrically heated dryer after they had been dry 
relaxed. This procedure was repeated three times. 
Before measurements taking, the samples were 
conditioned for 24 h in a standard atmosphere. Weight 
and thickness of fabrics were measured. The 
specifications of the fabric samples are reported in 
Table 1. 

Pilling was determined as the number of pills 
formed in a certain area of fabric surface at 2000 
cycles using Martindale abrasion tester according to 
ASTM (D4970). A higher number means a higher 
abrasion resistance, whereas a lower number means a 
higher pilling performance. 

The surfaces of samples were captured by an 
optical scanner (HP Scanjet G2410) with resolution 
200 dpi. To analyze the images, a program was 
developed by Matlab software. To determine the 
boundary between pill and the fabric surface, a linear 
filter was used on the images. The image captured 
from the fabric which has no pill was selected as 
reference image. Each of these images was divided 
into small windows. Brightness histogram was 

computed for each of the windows and the data 
resulted from the reference image was compared with 
these brightness histogram. The correlation 
coefficient between the histograms of two windows 
was calculated. If the difference was significant, a 
number is reported as the number of pills. 

In this study back propagation learning algorithm 
based on gradient descent with momentum and 
adaptive learning rate was used. Choosing a large 
learning rate value accelerates the training process but 
causes big errors at the output or destabilizes the 
training cycles, while a small value provides 
convergence with smaller errors and prolongs training 
time19. Therefore, using an adaptive learning rate 
enhances the training performance. For predicting the 
pilling performance of weft knitted fabrics, a feed 
forward multilayer neural network models with one 
neuron as output and six input unit in input layer was 
designed. The input parameters were yarn count 
(Nm), fabric structure, knit density, yarn twist (TPM), 
number of feeding yarns, and percentage of wool 
fibre. The levels chosen for qualitative input 
parameters (fabric structure and knit density) are 
coded as 1, 2 and 3 according to following cases: 

 

• Fabric structure: Plain (1), Rib (2), Full-milano (3) 

• Knit density: high density (1), low density (3) 

In this study, due to the availability of only a small 
sample data, memorization or over fitting of networks 
was prevented using weight decay technique. This 
involves modifying the performance function. 
Therefore, mean square error regularization 
(MSEREG) performance function was used instead of 
common mean square error (MSE) function23. 

Samples were divided randomly in training and 
testing sets. For training the neural network models, 
thirty one sets of data were selected and also five sets 
of data used for testing the predictive power of 
developed models. In Table 2 parameters of testing 
data were presented. To eliminate the effect of 
different units of input and output parameters, data 

 
 
Fig. 1— Structures of knitted fabrics (a) plain, (b) Full-milano 
and (c) rib 

 

Table 2—Parameters and the number of pills of testing data 
 

Blending ratio Sample 
No. 

Yarn count 
Nm 

Number of fed 
yarn 

Fabric 
density 

Yarn twist  
TPM 

Structure 

Wool Acrylic 

Number of pills after 
2000 abrasion cycles 

5 15.08 1 1 313.8 2 50 50 56 
6 15.10 1 1 312.4 3 25 75 22 
12 29.04 2 1 492.8 3 25 75 26 
18 29.04 2 2 492.8 1 75 25 42 
32 29.00 2 1 404.4 1 75 25 45 
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normalizing was carried out in such a way that they 
got zero mean and unit standard deviation14. 

After some trials 300 epochs was selected as 
number of training cycle according to Table 3. 
Tangent hyperbolic and linear transfer functions were 
used for hidden neurons and output neuron, 
respectively. Momentum rate was optimized at 0.9. 
The number of hidden neurons and the number of 
hidden layers are usually adjusted by trial-and-error 
method because these are problem-dependent 
parameters. It is known that neural networks with one 
hidden layer are suitable for majority of 
applications22. Therefore, seven topologies with one 

hidden layer and 6-12 neurons in it were tested. The 
mean square error of testing sets was considered 
getting the best topology and performance. In 
programming the network architecture, training and 
testing the models involve the neural network toolbox 
of MATLAB software 23. 
 
Results and Discussion 

Based on the Taguchi method, the values of signal-
to-noise ratio for the controllable factors was 
calculated. Analysis of variance of SN-ratios 
calculated for fabric samples show that all selected 
controllable factors have significant effect on pilling 
performance of knitted fabrics. The response for signal-
to-noise ratios of the fabrics is given in Table 4. 
According to the SN-ratio analysis, material type and 
the number of feeding yarns show the largest and 
smallest effect on the number of pills respectively. 
Knit density is found to be the second factor and is 
followed by other factors knit structure, yarn twist 
multiple and yarn count. 

The curves referring to the average values of  
SN-ratios of the controllable factors at each level are 
shown in Fig. 2, from which the levels corresponding 
to the highest SN-ratio values are chosen for each 
parameter, representing the optimum condition. Here, 
the optimum condition corresponds to the minimization 
of the number of pills. It is clear from Fig. 2 that the 
optimum levels are: acrylic/wool blend ratio (75/25), 
yarn twist multiple (αm 90), knit density (high), fabric 
structure (Full-milano), yarn count (coarser yarn,  
10 Nm), and number of feeding yarns (double feeding). 

Table 3—Effect of transfer function on performance of  
ANN models after 300 epochs 

 

Transfer function MSE of testing data ANN structure
Output layer Hidden layer  

    

6-8-1 Linear Sigmoid 29.86 
6-9-1 Linear Sigmoid 30.72 
6-8-1 Linear Tangent 

hyperbolic 
6.11 

6-9-1 Linear Tangent 
hyperbolic 

5.61 

 

Table 4Response table for signal-to- noise ratios of the fabrics 
 

Knit 
structure 

 

Material 
type 

Yarn 
twist 

Density Number 
of feed 

yarn 

Yarn 
count 

Level 

       

-31.83 -31.77 -32.09 -30.09 -31.65 -31.93 1 
-31.9 -33.88 -30.58 -32.21 -31.00 -30.71 2 

-30.17 -28.44       -        - - - 3 
 1.73 5.44 1.51 2.13 0.65 1.22 Delta 

       3 1      4       2     6    5 Rank 

 
 

Fig. 2— Average values of S/N ratios of the controllable factors at each of the levels 
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In the acrylic-wool blend yarns, acrylic fibres are 
coarser and longer. In staple yarn fabric, the longer 
the staple, the less is the pilling in general; because 
there are fewer fibre ends protruding per unit area5. 
Furthermore, coarser fibres have fewer tendencies to 
pill because of their higher stiffness compared with 
finer fibres. Therefore, the blended yarn with higher 
ratio of acrylic fibres show the lower number of pills. 
Also, higher yarns twist causes the less pilling 
because of the compactness and lower number of 
protruding fibre on the yam surface. Doubled yarn 
gives less pilling than singles yam for the same 
reasons. In single yarns, the pilling tendency is lower 
with an increase in the twist multiple. 

The results show that the knitted fabric produced 
with higher loop density represents the lower pilling 
rate. This might be attributed to the easier movements 
of yams owing to the greater instability of the loosely 
knitted fabrics, enabling the yarns to be secured more 
loosely in the body of the fabric. 

The construction of a fabric is very important for 
determining its susceptibility to pilling. The results of 
this investigation show that the structure Full-milano 
shows lower pilling because of its tight or compact 
structure. Tight fabric structures lead to low pull-out 
and restricted pill growth. However, a loosely knitted 
structures such as plain or rib has more tendency to 
show such damage when continually worn. 

Training results of seven selected topologies is 
presented in Table 5. Experimental results show that 
the number of neurons have a dominant effect on 
performance of proposed models. It is found that the 
model with one hidden layer and ten neurons into 
hidden layer gives the best performance and the least 
MSE on testing data for predicting the number of pills 
of weft knitted fabrics after 300 epochs. Obtained 
results show that the 6-10-1 topology i.e. ten neurons 
in first hidden layer, gives the best performance for 
predicting the number of pills of weft knitted fabrics. 

The mean square of prediction of testing data is 5.57 
and that of training data is 3.21. According to Table 5, 
the maximum and minimum error of prediction for 
testing data is 4.18% and 0.21% respectively. The 
average of prediction error of the number of pills of 
weft knitted fabrics is 1.92%. The results confirm the 
good capability and predictive power of artificial 
neural network algorithm for predicting the pilling 
performance of weft knitted fabric. 

According to the signal-to-noise ratio analysis, it is 
observed that material type and the number of feeding 
yarns have the largest and smallest effects on the 
number of pills respectively. Our findings reveal that 
the optimum levels of parameters are 75/25 acrylic/ 
wool, 90 αm, high knit density, Full-milano, coarser 
yarn and double feeding respectively. 

The prediction of fabric pilling is carried out using 
back propagation artificial neural network algorithm 
based on gradient descent algorithm learning algorithm 
with adaptive learning rate and momentum. Obtained 
results showed that the topology with one hidden layer 
and ten hidden neuron yielded the best performance 
after 300 epochs. The mean square of prediction of 
testing data was 5.57 and training data 3.21. 
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