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One of the main methods to reduce the production costs is waste recycling which is the most important challenge for the future.
Cotton wastes collected from ginning process have desirable properties which could be used during spinning process. The purpose
of this study was to develop predictive models of breaking strength and mass irregularity (CVm%) of cotton waste rotor-spun
yarns containing cotton waste collected from ginning process by using the artificial neural network trained with backpropagation
algorithm. Artificial neural network models have been developed based on rotor diameter, rotor speed, navel type, opener roller
speed, ginning waste proportion and yarn linear density as input parameters. The parameters of artificial neural network model,
namely, learning, and momentum rate, number of hidden layers and number of hidden processing elements (neurons) were
optimized to get the best predictive models. The findings showed that the breaking strength and mass irregularity of rotor spun
yarns could be predicted satisfactorily by artificial neural network. The maximum error in predicting the breaking strength and
mass irregularity of testing data was 8.34% and 6.65%, respectively.

1. Introduction

Waste recycling is the most important challenge for the
future. For minimizing the production costs, exploitation
of raw material should be improved. Two solutions for
this problem have been proposed. First, providing a high-
cleaning efficiency during the blowing and carding processes
and second, recovery of fibers from wastes [1].

The emerging rotor and friction spinning technology has

been marketed on the premise of being able to spin lower
grade cotton into acceptable yarn quality at considerable
savings [2]. Many researchers [1, 3, 4] have discussed the
reuse of recovered fibers in spinning process. It is reported
that waste fibers can be blended with primary raw material
with a percentage up to 20%, without noticeable changes
in quality [1]. All those studies have discussed the effect of
the fibers recovered from blowing and carding processes on

the yarn quality. Using fibers collected from ginning process
is naturally more economical than the fibers recovered from
blowing and carding processes.

Artificial neural networks (ANNs) or connectionist mod-
els, parallel distributed processing models, and neuromor-
phic systems represent a set of very powerful mathematical
techniques for modeling, control and optimization. An
artificial neural network is an information-processing system
that has certain performance characteristics in common with
biological neural networks. This technique is useful when
there are large number of effective factors on the specific
process. ANN models are called as “black box” as they simply
connect the inputs and outputs without understanding any
physical information about the process [5, 6].

In recent years, ANN models have been widely used to
predict the yarn properties produced in different spinning
systems such as air-jet, rotor and ring spinning. Beltran et al.
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[7] proposed ANN model to predict the worsted spinning
process. Tensile properties of air-jet spun yarns based on
nozzle parameters, namely, nozzle pressure and nozzle design
were studied by Zeng et al. [8]. Breaking elongation of
ring spun cotton yarns were predicted using mathematical,
statistical, and ANN models by P. K. Majumdar and A.
Majumdar [9]. Fiber elongation and uniformity index were
reported as dominant parameters on breaking elongation in
this research. Tensile properties of air-jet spun yarns was
predicted by Ramsh et al. [10]. Performance of artificial
neural network model, neuro-fuzzy algorithm, and linear
regression to predict the breaking elongation of rotor-spun
yarns was studied by Majumdar et al. [11]. Cheng and Adams
[12] investigated neural networks as yarn strength predictors
based on fiber properties measured by HVI testing system.
Zhu and Ethridge [13] tried to predict the ring and rotor yarn
hairiness from fiber properties measured by three different
systems, that is, HVI, AFIS, and the traditional instruments.
The fiber length also showed the main effect on yarn
hairiness. Sette et al. [14] used a neural network to model
the spinning process with 41 fiber properties and 5 machine
parameters as input and 9 yarn properties as output. The
breaking elongation of polyester/viscose rotor-spun yarns
was also predicted by backpropagation multi layer percep-
tron algorithm [15]. Tensile properties, that is, breaking
strength and breaking elongation of cotton-covered nylon
core-spun yarns was predicted by Gharehaghaji et al. [16].

Breaking strength and mass irregularity have been known
as two main parameters which effect the performance of
spun yarns during downstream processes and also quality of
fabrics. In this paper, two artificial neural network models
have been developed for prediction of breaking strength
and mass irregularity (CVm%) of rotor-spun yarns produced
from different ratios of cotton fibers and fibers recovered
from ginning process. Process parameters of rotor spinning,
namely, rotor diameter, navel type, rotor speed, opener roller
speed, yarn count, and finally cotton ginning waste percent-
age were used as input parameters of predictive models. On
the other hand, impact of input parameters was evaluated in
accordance with obtained ANN models.

A neural network consists of a large number of simple
processing elements called neurons, units, cells, nodes, or
processing elements. Each neuron receives connections from
other neurons and/or itself, each with an associated weight.
The interconnectivity defines the topology of the ANN. The
weights represent information being used by the neural
network model to solve a problem. One of the central issues
in neural network design is to utilize systematic procedures
(a training algorithm) to modify the weights directly from
the training data without any assumptions about the data’s
statistical distribution [5, 17]. There are different kinds of
topologies and training algorithms, but the feedforward
neural network with backpropagation learning algorithm is
more popular. In this structure, the neurons are located in
layers and from one layer to another one connected with
each other with links to carry the signals between them.
There is a weight for each connection link which acts as a
multiplication factor to the transmitted signal. An activation
function such as linear, sigmoid, or others. is applied to each
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Figure 1: The structure of single hidden layer feedforward neural
network [18].

neuron’s input to determine the output signal. Usually a feed
forward neural network consists of several layers of nodes,
one input layer, one output layer and some hidden layers in
between. The schematic of feed forward neural network with
one hidden layer is shown in Figure 1 [18].

The training of a neural network by backpropagation in-
volves three stages: the feedforward of the input training pat-
tern, the calculation and backpropagation of the associated
error, and the adjustment of the weights [5]. The calculation
of error vector to adjust the weights is done according to
the calculated mean square error (MSE) form the difference
between actual and predicted outputs according to the fol-
lowing relationships equation:

MSE =
∑P

j=0

∑N
i=0

(
ti j − yi j

)

NP
, (1)

where ti j and yi j are the target output and predicted output,
respectively, for ith training pattern at jth output neuron. P
is the total number of output neurons and N indicates the
number of training patterns.

In the backward pass, this error signal is propagated
backwards to the neural netwrok and the synaptic weights are
adjusted in such a manner that the error signal decreases with
each iteration process. Thus, the neural network model ap-
proaches closer and closer for producing the desired output
The corrections necessary in the synaptic weights are carried
out by a delta rule, which is expressed by the following equa-
tion:

ΔWji(n) = −η
⌊
∂(MSE)
∂Wji(n)

⌋

, (2)

where Wji(n) is the weight connecting the neurons j and i at
the nth iteration; ΔWji(n) is the correction applied to Wji(n)
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Figure 2: Different types of navels: (a) 8 flutes, (b) 4 flutes, and (c)
without flute.

at the nth iteration; η is a constant known as learning rate
[7, 11].

2. Experimental

2.1. Materials and Methods. The raw materials used in this
investigation were cotton fibers and cotton waste recovered
from ginning machines. Cotton fibers were chosen for all
mixtures with secondary raw material of three different
proportions (50–50%, 35–65%, and 65–35%). Cotton fiber
properties were measured by the Spinlab 900 according to
ASTM-D4605 [19] Standard Test Method for Measurement
of Cotton Fibers by HVI, with a total of four samples taken
for evaluation. A summary of raw fiber property has been
shown in Table 1.

The blending of fibers was carried out after carding at
the first passage in the drawing frame. Second passage was
used to improve the homogeneity of blending. Slivers were
used to produce yarns with three different linear densities
12, 16, and 20 Ne on Elitex rotor-spinning machine. 81 yarn
samples were produced with different machine, yarn and
fiber parameters, namely, rotor diameter, rotor speed, opener
roller speed, navel type (as shown in Figure 2), ginning
waste percentages, and yarn linear density. The setting of
the machine for producing these yarns has been shown in
Table 2.

Samples were kept in standard testing condition for 24 h
prior to testing. Variations were to be expected within indi-
vidual yarn bobbins, so the first few meters were discarded.
In addition, samples were taken at various locations in the
yarn bobbins.

ASTM-D2256 [20] Standard Test Method for Tensile
Properties of Yarns by the single-strand method, was used
to measure single yarn breaking strength (cN/tex) by the
Instron tensile tester. The testing speed was 60 mm/min, and
the gauge length was 500 mm. Each sample was tested ten
times. The irregularity of yarns was measured with reference
to ASTM-D 1425 [21], by the Uster Tester 3. A statistical
summary of yarn properties produced by different blend
ratio has been presented in Table 3.

2.2. Artificial Neural Network Parameters. For predicting the
breaking strength and mass irregularity (CVm%) of cotton/
ginning waste rotor-spun yarns, two feed forward multilayer
neural network models based on backpropagation learning
algorithm with one neuron as output, and six-input unit
in input layer was designed. The input parameters were
yarn count (Ne), rotor speed (r.p.m), rotor diameter (mm),

Table 1: Fiber properties summary.

Fiber characteristics Cotton Ginning waste

tenacity (cN/tex) 27.1 23.2

Breaking elongation (%) 6.7 6.6

Mean length by weight (mm) 23.90 21.77

Short fiber content by weight (%) 7 11.1

Maturity index 0.82 0.81

Micronair 4.38 4.29

UQL (upper quartile length by weight)
(mm)

28.89 27.19

CV length by weight (%) 1.91 1.94

Table 2: Rotor spinning machine parameters.

Machine parameters Description of conditions

Rotor diameter (mm) 48, 54, 66

Rotor speed (rpm) 41000, 47000, 53000

Opener roller type OK40 (for cotton) (fibers)

Opener roller speed (r.p.m) 9800, 8400, 7350

Navel type (Steel); 8, 4, and without flutes

Delivery speed (m/min) 52.4 m/min

opener roller speed (r.p.m), ginning waste percentage, and
navel type. All of this parameters were expressed in a vector
form. Regarding the qualitative input parameter, namely,
navel type, inputs were encoded as 0, 1, and 2. 0 referred to
navel A, 1 referred to navel B, and 2 indicated navel C.

In this study, due to the availability of only a small sample
data, memorization or overfitting of networks was prevented
by using the weight decay technique. This involves modifying
the performance function. Therefore, mean square error reg-
ularization (MSEREG) performance function was used in-
stead of common mean square error function. This function
is as follows:

msereg = γ(mse) +
(
1− γ

)
msw, (3)

where γ is the performance ratio and

msw = 1
n

n∑

j=1

w2
j . (4)

In (4), n is the number of weighted connection [22].
Samples were divided randomly in training and testing

sets. 72 and 9 sets of data were selected for training the neural
network models and testing the predictive power of devel-
oped models, respectively. To eliminate the effect of different
units of input and output parameters, data normalizing was
carried out in such a way that they got zero mean and unit
standard deviation [23]. The sigmoid and linear transfer
functions were used for hidden neurons and output neurons,
respectively.

The number of hidden neurons and the number of
hidden layers are usually adjusted by trial and error because
these are problem-dependent parameters. It is known that
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Table 3: Summary of yarn properties produced by different blend ratio.

(cotton/ginning waste)
Breaking strength (cN/tex) Mass irregularity (CVm%)

Min Max Ave Min Max Ave

65/35 7.39 11.87 9.47 14.37 19.30 16.79

50/50 6.30 12.86 9.37 14.71 20.14 16.99

35/65 7.01 12.44 8.77 15.68 20.38 17.70

Table 4: Effect of learning rate on performance of ANN model to predict the irregularity and breaking strength (momentum rate was kept
constant at 0.7).

Learning rate
Breaking strength (cN/tex) Mass irregularity (CVm%)

MSE (test data) MSE (train data) MSE (test data) MSE (train data)

0.05 0.223 0.143 0.830 0.682

0.15 0.213 0.136 0.764 0.510

0.30 0.245 0.113 0.654 0.498

0.45 0.238 0.103 0.538 0.429

0.60 0.248 0.100 0.576 0.476

0.75 0.262 0.095 0.606 0.450

0.90 0.236 0.086 0.757 0.475

Table 5: Performance of different topologies for predicting the mass irregularity and breaking strength of cotton/waste rotor-spun yarns.

Topology
Breaking strength (cN/tex) Mass irregularity

MSE (test data) MSE (train data) MSE (test data) MSE (train data)

6-6-1 0.254 0.196 0.706 0.576

6-8-1 0.191 0.164 0.649 0.537

6-10-1 0.238 0.153 0.573 0.483

6-12-1 0.241 0.141 0.596 0.446

6-6-6-1 0.251 0.164 0.597 0.517

6-8-6-1 0.151 0.146 0.567 0.476

6-8-8-1 0.140 0.138 0.538 0.430

6-10-8-1 0.188 0.123 0.458 0.412

6-12-12-1 0.183 0.134 0.660 0.377

neural networks with one hidden layer are suitable for ma-
jority of applications [24], and the second hidden layer can
improve the performance of the network if there is a complex
relationship between the input and output parameters.
Therefore, 15 topology with one and two hidden layers and
six to twelve neurons in hidden layers were tested. The mean
square error of testing sets was considered getting the best
topology. In Figure 3, the schematic of topologies of ANN
models has been illustrated.

3. Results and Discussion

3.1. Artificial Neural Network Models. To identify the opti-
mum value of learning and momentum rate, some trials
with 6-8-6-1 topology in the 2000 epoch was organized. The
obtained results showed that the suitable level of learning
rate is 0.15 and 0.45 for models of breaking strength and
mass irregularity (CVm%), respectively, (Table 4). Then

the optimized value of learning rate was used to optimize the
momentum rate. As shown in Figures 4 and 5, the momen-
tum rate was changed from 0.1 to 0.9 with 0.2 step. It is clear
from Figures 4 and 5 that the 0.9 and 0.7 are the optimum
values of momentum rate for two models, respectively. In
these values, the best performance of models for predicting
the testing data was obtained. The influence of momentum
rate on training performance of ANN models was small.

A summary of training results for 9 topologies out of 15
selected topologies have been presented in Table 5. In these
steps, the optimized values of learning rate and momentum
rate were applied in training process for both models. The
results showed that the ANN model with two hidden layers
and 8 processing elements into first and second hidden layers
gives the best performance and the least MSE on testing data
for predicting the breaking strength of cotton/ginning watses
rotor-spun yarns after the 2000 epoch. On the other hand,
the 6-10-8-1 topology, that is, 10 and 8 neurons in first and



Modelling and Simulation in Engineering 5

Rotor speed
(r.p.m)

Opener roller
speed (r.p.m)

Rotor diameter
(mm) Breaking strength (cN/tex)

or irregularity (CV%)

Yarn count (Ne)

Navel type

Ginning wastes

Input units 1st hidden layer 2nd hidden layer Output layer

Figure 3: Schematic of ANN model to predict the breaking strength and irregularity of cotton/cotton ginning watse rotor-spun yarns.
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Figure 4: Effect of momentum rate on performance of ANN model
to predict the breaking strength (learning rate was kept constant at
0.15).

second hidden layer, respectively, gave the best performance
for predicting the mass irregularity (CVm%). In Figures 6
and 7, training performance of two models based on linear
regression fitted between the target value, and predicted
value of training data have been shown. The R-value of
breaking strength model was 0.931, and irregularity model
(CVm%) was 0.948.

In the obtained model for prediction, the breaking
strength, the mean square error of testing and training data
was 0.140 and 0.138, respectively. The experimental data to
verify the predictive power of proposed models have been
shown in Table 6. In Table 7, the predicted values and pre-
diction error for breaking strength of cotton/ginning waste
rotor-spun yarns have been presented. It is clear that the
predictive power of proposed method is satisfactory and
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Figure 5: Effect of momentum rate on performance of ANN model
to predict the mass irregularity (learning rate was kept constant at
0.45).

the minimum error on testing data is 0.09% and the maxi-
mum error is 8.34%. The average of prediction error is 3.1%.

The mean square error of testing and training data on
predictive model of mass irregularity was 0.412 and 0.318,
respectively. It is observed from Table 8 that the minimum
and maximum of prediction error was 0.37% and 6.65%,
respectively. The mean error rate of prediction of irregu-
larity were 3.08%. All outcomes clearly approved the good
capability of ANN model to predict the mass irregularity of
cotton/ginning waste rotor-spun yarns.

3.2. Analysis of the Impact of Rotor-Spun Yarn Production
Parameters. According to method used by Majumdar et al.
[11], the relative contribution of each inputs to the breaking
strength and mass irregularity (CVm%) of cotton/ginning
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Table 6: The parameters of testing data of ANN models.

Parameter

Sample no. Ginning waste (%) Yarn count (Ne) Rotor diameter (mm) Opener roller speed (r.p.m) Rotor speed (r.p.m) Navel type

1 65 12 66 8400 48000 B

2 50 16 66 9700 53000 C

3 35 12 54 9700 41000 A

4 35 20 54 8400 53000 B

5 35 20 66 7350 41000 C

6 65 12 54 9700 41000 A

7 50 12 54 9700 41000 C

8 35 12 54 9700 41000 B

9 65 12 66 8400 48000 A
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Figure 6: Training performance of ANN model for prediction of
mass irregularity.

waste rotor-spun yarns has been studied. An input significant
test was conducted by eliminating one designated input from
the model at a time. Based on the obtained parameters,the
network was trained again and the prediction was made from
the testing data. The percent increase in the mean squared
error of prediction as compared to that of optimized neural
network models was considered as the indicator of impor-
tance of the eliminated input. Effectiveness of process pa-
rameters on breaking strength and mass irregularity has been
shown in Tables 9 and 10, respectively.

It is clear form Table 9 that the rotor speed and waste per-
centage showed the major effect on breaking strength of cot-
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Figure 7: Training performance of ANN models for prediction of
breaking strength.

ton/ginning waste rotor-spun yarns. The findings confirmed
by many researchers [25–27] refer to significant effect of
rotor speed on the yarn breaking strength. On the other hand
and according to Table 1, the waste percentage determines
the amount of short fiber contributed in yarn structure and
average length of fiber which significantly affects the yarn
breaking strength.

Regarding the mass irregularity (as shown in Table 10),
the ginning waste percentage and yarn count were the most
important parameters on mass irregularity (CVm%). As
shown in Table 3, by increasing the ginning waste percentage
in rotor-spun yarn structure, the increase of yarn irregularity
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Table 7: The Breaking strength (cN/tex) values predicted by the
ANN model with 6-8-8-1 topology on testing data.

Sample no.
Experimental

value
Predicted

value
Abs. error

Error rate
(%)

1 9.53 9.74 0.21 2.22

2 10.98 10.97 −0.01 0.09

3 9.68 10.48 0.81 8.34

4 8.94 9.04 0.09 1.07

5 7.39 7.59 0.19 2.69

6 9.68 9.21 −0.48 4.95

7 9.95 9.53 −0.42 4.23

8 9.09 9.19 −0.09 1.04

9 9.90 10.23 −0.33 3.32

Table 8: The mass irregularity (CVm%) values predicted by the
ANN model with 6-10-8-1 topology on testing data.

Sample no.
Experimantal

value
Predicted

value
Abs. error

Error rate
(%)

1 16.08 16.26 −0.18 1.13

2 15.22 14.25 0.96 6.32

3 18.15 19.35 −1.20 6.64

4 16.59 16.22 0.36 2.17

5 16.29 15.75 0.53 3.26

6 19.07 20.18 −1.11 5.84

7 16.53 16.59 −0.06 0.37

8 16.29 16.14 0.14 0.89

9 15.68 15.52 0.15 1.01

is observed. This could be the reason to observe this param-
eter as the most effective one on mass irregularity of cotton/
ginning waste rotor-spun yarns. Opener roller speed had the
least impact on breaking strength and irregularity.

4. Conclusion

The presented work demonstrated the application of arti-
ficial neural network algorithm for predicting the breaking
strength and mass irregularity of cotton/ginning waste rotor-
spun yarns based on rotor diameter, rotor speed, navel type,
opener roller speed, ginning waste proportion, and yarn lin-
ear density. Our findings indicated the good capability of ar-
tificial neural network algorithm as predictive model. These
proposed models obviously will reduce the required time to
produce the cotton/ginning waste in accordance to specif-
ic properties in spinning mills. The results showed that the
artificial neural network model with two hidden layers and 8
processing elements into the first and second hidden layers
gives the best performance and the least MSE on testing
data for predicting the breaking strength of cotton/ginning
watses rotor-spun yarns. On the other hand, the 6-10-8-1
topology, that is, 10 and 8 neurons in first and second hidden
layer, respectively, gave the best performance for predicting
the mass irregularity (CVm%). The mean square error to
predict testing data was 0.140 and 0.4120 for breaking

Table 9: Effectiveness of input parameters on breaking strength.

Excluded input parameter MSE
Increase in mean
square error (%)

Ranking

Rotor speed 0.442 216.285 1

Rotor diameter 0.289 106.714 3

Opener roller speed 0.153 9.928 6

Navel type 0.254 81.926 4

Waste percentage 0.428 206.214 2

Yarn count 0.249 78.285 5

Table 10: Effectiveness of input parameters on mass irregularity.

Excluded input parameter MSE
Increase in mean
square error (%)

Ranking

Rotor speed 0.588 28.524 5

Rotor diameter 0.695 51.855 4

Opener roller speed 0.546 19.227 6

Navel type 0.803 75.316 3

Waste percentage 0.901 96.704 1

Yarn count 0.883 92.885 2

strength and mass irregularity of cotton/ginning waste, re-
spectively. The effectiveness of input parameters was also
evaluated. Waste percentage and yarn count were found ma-
jor parameters on mass irregularity of rotor-spun yarn and
rotor speed and waste percentage were also found as the most
effective parameters on breaking strength of rotor-spun yarn.
Moreover, opening roller speed showed the least effectiveness
on both mentioned parameters. In recent studies, developing
predictive models based on artificial neural network algo-
rithm for prediction of the hairiness and breaking elongation
and also optimization of input parameters using genetic
algorithm have been focused.
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